Skip to main content

Advertisement

Log in

Human Umbilical Cord Tissue-Derived Multipotent Mesenchymal Stromal Cells Exhibit Maximum Secretory Activity in the Presence of Umbilical Cord Blood Serum

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Using multiplex analysis, we performed a comparative study of cytokine and growth factor production by human umbilical cord tissue-derived multipotent mesenchymal stromal cells (UC-MSC) cultured under standard conditions and in the presence of human umbilical cord blood serum (UCBS). It was found that the secretion of most studied molecules, including well-known inductors of regeneration HGF, G-CSF, GM-CSF, and VEGF by UCMSC considerably increased in the presence of 5% UCBS. The use of UCBS allows not only obtaining xenogenic-free cellular and cell-free therapeutic products, but also increasing the secretion of most biologically active molecules capable of stimulating repair processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Isolation of Multipotent Mesenchymal Stromal Cells from Cryopreserved Human Umbilical Cord Tissue. Bull. Exp. Biol. Med. 2016;160(4):530-534. https://doi.org/10.1007/s10517-016-3213-9

    Article  CAS  PubMed  Google Scholar 

  2. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells. Bull. Exp. Biol. Med. 2017;162(4):528-533. https://doi.org/10.1007/s10517-017-3654-9

    Article  PubMed  Google Scholar 

  3. Romanov YA, Volgina NE, Vtorushina VV, Romanov AY, Dugina TN, Kabaeva NV, Sukhikh GT. Comparative Analysis of Secretome of Human Umbilical Cord- and Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells. Bull. Exp. Biol. Med. 2019;166(4):535-540. https://doi.org/10.1007/s10517-019-04388-1

    Article  CAS  PubMed  Google Scholar 

  4. Romanov YA, Vtorushina VV, Dugina TN, Romanov AY, Petrova NV. Human Umbilical Cord Blood Serum/Plasma: Cytokine Profile and Prospective Application in Regenerative Medicine. Bull. Exp. Biol. Med. 2019;168(1):173-177. https://doi.org/10.1007/s10517-019-04670-2

    Article  CAS  PubMed  Google Scholar 

  5. Romanov YuA, Romanov AYu. Tissues of perinatal origin: a unique source of cells for regenerative medicine. Part II. Umbilical cord. Neonatologiya. 2018;6(3):54-73. Russian.

    Google Scholar 

  6. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal stem cells on horizon: A new arsenal of therapeutic agents. Stem Cell Rev. 2018;14(4):484-499.

    Article  CAS  Google Scholar 

  7. Arutyunyan I, Elchaninov A, Fatkhudinov T, Makarov A, Kananykhina E, Usman N, Bolshakova G, Glinkina V, Goldshtein D, Sukhikh G. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration. Int. J. Clin. Exp. Pathol. 2015;8(5):4469-4480.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C. Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications. Curr. Stem Cell Res. Ther. 2013;8(2):144-155.

    Article  CAS  Google Scholar 

  9. Beer L, Mildner M, Ankersmit HJ. Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann. Transl. Med. 2017;5(7). ID 170. https://doi.org/10.21037/atm.2017.03.50

  10. Bermudez MA, Sendon-Lago J, Seoane S, Eiro N, Gonzalez F, Saa J, Vizoso F, Perez-Fernandez R. Anti-inflammatory effect of conditioned medium from human uterine cervical stem cells in uveitis. Exp. Eye Res. 2016;149:84-92.

    Article  CAS  Google Scholar 

  11. Caplan AI. Adult mesenchymal stem cells: When, where, and how. Stem Cells Int. 2015;2015. ID 628767. https://doi.org/10.1155/2015/628767

  12. Caseiro AR, Santos Pedrosa S, Ivanova G, Vieira Branquinho M, Almeida A, Faria F, Amorim I, Pereira T, Maurício AC. Mesenchymal stem/stromal cells metabolomic and bioactive factors profiles: a comparative analysis on the umbilical cord and dental pulp derived Stem/Stromal Cells secretome. PLoS One. 2019;14(11). ID e0221378. https://doi.org/10.1371/journal.pone.0221378

  13. Cooper K, SenMajumdar A, Viswanathan C. Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum. Int. J. Stem Cells. 2010;3(2):119-128.

    Article  CAS  Google Scholar 

  14. Corsello T, Amico G, Corrao S, Anzalone R, Timoneri F, Lo Iacono M, Russo E, Spatola G.F, Uzzo M.L, Giuffrè M, Caprnda M, Kubatka P, Kruzliak P, Conaldi PG, La Rocca G. Wharton’s jelly mesenchymal stromal cells from human umbilical cord: a close-up on immunomodulatory molecules featured in situ and in vitro. Stem Cell Rev. Rep. 2019;15(6):900-918.

    Article  CAS  Google Scholar 

  15. Esmaeli A, Moshrefi M, Shamsara A, Eftekhar-Vaghefi SH, Nematollahi-Mahani SN. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum. Int. J. Reprod. Biomed. (Yazd). 2016;14(9):567-576.

    Article  CAS  Google Scholar 

  16. Ghaderi A, Abtahi S. Mesenchymal stem cells: miraculous healers or dormant killers? Stem Cell Rev. 2018;14(5):722-733.

    Article  CAS  Google Scholar 

  17. Hassan G, Kasem I, Antaki R, Mohammad MB, AlKadry R, Aljamali M. Isolation of umbilical cord mesenchymal stem cells using human blood derivatives accompanied with explant method. Stem Cell Investig. 2019;6. ID 28. https://doi.org/10.21037/sci.2019.08.06

  18. Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther. 2018;9(1). ID 63. https://doi.org/10.1186/s13287-018-0791-7

  19. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy. 2016;18(1):13-24.

    Article  CAS  Google Scholar 

  20. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed. Res. Int. 2014;2014. ID 965849. https://doi.org/10.1155/2014/965849

  21. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen. Med. 2019;4. ID 22. https://doi.org/10.1038/s41536-019-0083-6

  22. Sriramulu S, Banerjee A, Di Liddo R, Jothimani G, Gopinath M, Murugesan R, Marotta F, Pathak S. Concise review on clinical applications of conditioned medium derived from human umbilical cord-mesenchymal stem cells (UC-MSCs). Int. J. Hematol. Oncol. Stem Cell Res. 2018;12(3):230-234.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Romanov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 2, pp. 84-88, June, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, Y.A., Vtorushina, V.V., Dugina, T.N. et al. Human Umbilical Cord Tissue-Derived Multipotent Mesenchymal Stromal Cells Exhibit Maximum Secretory Activity in the Presence of Umbilical Cord Blood Serum. Bull Exp Biol Med 169, 544–548 (2020). https://doi.org/10.1007/s10517-020-04926-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-020-04926-2

Key Words

Navigation